Continuous Mathematics HT23, Misc


Flashcards

If

\[\mathbf{v}=\left[\begin{array}{c} v _ {1} \\\\ v _ {2} \\\\ \vdots \\\\ v _ {n} \end{array}\right], \mathbf{w}=\left[\begin{array}{c} w _ {1} \\\\ w _ {2} \\\\ \vdots \\\\ w _ {m} \end{array}\right]\]

then what is the outer product $\pmb v \otimes \pmb w$?


\[\pmb v \pmb w^\intercal =\left[\begin{array}{cccc} v _ {1} w _ {1} & v _ {1} w _ {2} & \cdots & v _ {1} w _ {m} \\\\ v _ {2} w _ {1} & v _ {2} w _ {2} & \cdots & v _ {2} w _ {m} \\\\ \vdots & \vdots & \ddots & \vdots \\\\ v _ {n} w _ {1} & v _ {n} w _ {2} & \cdots & v _ {n} w _ {m} \end{array}\right]\]

If

\[\mathbf{v}=\left[\begin{array}{c} v _ {1} \\\\ v _ {2} \\\\ \vdots \\\\ v _ {n} \end{array}\right], \mathbf{w}=\left[\begin{array}{c} w _ {1} \\\\ w _ {2} \\\\ \vdots \\\\ w _ {m} \end{array}\right]\]

then what is the $(i, j)$th entry in the outer product $\mathbf v \otimes \mathbf w$?


\[(\mathbf v \otimes \mathbf w) _ {ij} = v _ i w _ j\]

Given an $n \times m$ matrix $A$ with rows $\pmb a _ i$, how can you simplify

\[\sum _ {i=1}^n \pmb a _ i^\intercal \pmb a _ i\]

?


\[A^\intercal A\]



Related posts